Prof. Dr. Peter Koepke, Dr. Philipp Schlicht	Problem sheet 10
--	------------------

Problem 36 (6 Points). Suppose that M is a ground model and $x \in \omega_2$. Show that x is Cohen generic over M if and only if $x \notin d^{M[G]}$ for all F-codes $d \in M$ for closed nowhere dense subsets of ω_2 .

Problem 37 (6 Points). Let $(x + y)(n) = x(n) + y(n) \pmod{2}$ for $x, y \in {}^{\omega}2$. Let $A + B = \{x + y \mid x \in A, y \in B\}$ for $A, B \subseteq {}^{\omega}2$. Suppose that $A, B \subseteq {}^{\omega}2$ are Borel sets of positive measure. Show that A + B contains an interval.

(Hint: there are $m \in \omega$ and $s, t \in {}^{m}2$ with $\frac{\mu(A \cap N_s)}{\mu(N_s)} > \frac{1}{2}$ and $\frac{\mu(B \cap N_t)}{\mu(N_t)} > \frac{1}{2}$ by the Lebesgue density theorem. Show that $N_{s+t} \subseteq A + B$. To do this, show that $(z + (A \cap N_s)) \cap (B \cap N_t) = \neq \emptyset$.)

Problem 38 (6 Points). Let P denote the forcing consisting of conditions $p = (C_p, F_p)$ with $dom(C_p) = n \in \omega$, $C_p: n \to [\omega]^{<\omega}$, $|C_p(m)| \le 2^m$ for all m < n, and $F_p \in [{}^{\omega}\omega]^{\le 2^n}$. Suppose that $p = (C_p, F_p)$, $q = (C_q, F_q)$. Let $p \le q :\iff C_q \subseteq C_p$, $F_q \subseteq F_p$, and $f(n) \in C_p(n)$ for all $n \in dom(C_p) \setminus dom(C_q)$ and all $f \in F_q$.

- (a) Show that P is σ -linked. (*Hint: suppose that* $p = (C_p, F_p)$ and $q = (C_q, F_q)$. Show that p, q are compatible if $|\{f(n) \mid f \in F_p \cup F_q\}| \leq 2^n$.)
- (b) A 2^n -cone is a function $f: \omega \to [\omega]^{<\omega}$ with $|f(n)| \leq 2^n$ for all $n \in \omega$. Let $[f] := \{g \in {}^{\omega}\omega \mid \forall n \in \omega \ g(n) \in f(n)$. Suppose that M is a ground model and G is an M-generic filter for P^M . Show that in M[G], there is a sequence $(f_m)_{m \in \omega}$ of 2^n -cones such that $({}^{\omega}\omega)^M \subseteq \bigcup_{m \in \omega} [f_m]$.

Please hand in your solutions on Monday, January 13 before the lecture.