Problem 36 (6 Points). Suppose that M is a ground model and $x \in{ }^{\omega} 2$. Show that x is Cohen generic over M if and only if $x \notin d^{M[G]}$ for all F-codes $d \in M$ for closed nowhere dense subsets of ${ }^{\omega} 2$.

Problem 37 (6 Points). Let $(x+y)(n)=x(n)+y(n)(\bmod 2)$ for $x, y \in{ }^{\omega} 2$. Let $A+B=\{x+y \mid x \in A, y \in B\}$ for $A, B \subseteq{ }^{\omega} 2$. Suppose that $A, B \subseteq{ }^{\omega} 2$ are Borel sets of positive measure. Show that $A+B$ contains an interval.
(Hint: there are $m \in \omega$ and $s, t \in{ }^{m} 2$ with $\frac{\mu\left(A \cap N_{s}\right)}{\mu\left(N_{s}\right)}>\frac{1}{2}$ and $\frac{\mu\left(B \cap N_{t}\right)}{\mu\left(N_{t}\right)}>\frac{1}{2}$ by the Lebesgue density theorem. Show that $N_{s+t} \subseteq A+B$. To do this, show that $\left.\left(z+\left(A \cap N_{s}\right)\right) \cap\left(B \cap N_{t}\right)=\neq \emptyset.\right)$

Problem 38 (6 Points). Let P denote the forcing consisting of conditions $p=$ $\left(C_{p}, F_{p}\right)$ with $\operatorname{dom}\left(C_{p}\right)=n \in \omega, C_{p}: n \rightarrow[\omega]^{<\omega},\left|C_{p}(m)\right| \leq 2^{m}$ for all $m<n$, and $\left.F_{p} \in\left[{ }^{\omega} \omega\right]\right]^{2}$. Suppose that $p=\left(C_{p}, F_{p}\right), q=\left(C_{q}, F_{q}\right)$. Let $p \leq q: \Longleftrightarrow C_{q} \subseteq C_{p}$, $F_{q} \subseteq F_{p}$, and $f(n) \in C_{p}(n)$ for all $n \in \operatorname{dom}\left(C_{p}\right) \backslash \operatorname{dom}\left(C_{q}\right)$ and all $f \in F_{q}$.
(a) Show that P is σ-linked.
(Hint: suppose that $p=\left(C_{p}, F_{p}\right)$ and $q=\left(C_{q}, F_{q}\right)$. Show that p, q are compatible if $\left|\left\{f(n) \mid f \in F_{p} \cup F_{q}\right\}\right| \leq 2^{n}$.)
(b) A 2^{n}-cone is a function $f: \omega \rightarrow[\omega]^{<\omega}$ with $|f(n)| \leq 2^{n}$ for all $n \in \omega$. Let $[f]:=\left\{g \in{ }^{\omega} \omega \mid \forall n \in \omega g(n) \in f(n)\right.$. Suppose that M is a ground model and G is an M-generic filter for P^{M}. Show that in $M[G]$, there is a sequence $\left(f_{m}\right)_{m \in \omega}$ of 2^{n}-cones such that $\left({ }^{\omega} \omega\right)^{M} \subseteq \bigcup_{m \in \omega}\left[f_{m}\right]$.

